
An empirical investigation of OpenMP based
implementation of Simplex Algorithm

Arkaprabha Banerjee1, Pratvi Shah1, Shivani Nandani1, Shantanu Tyagi1,
Sidharth Kumar2, and Bhaskar Chaudhury1

1 Group in Computational Science & High Performance Computing, DA-IICT, India
2 University of Alabama at Birmingham, USA

Abstract. This paper presents a shared-memory based parallel imple-
mentation of the standard simplex algorithm. The simplex algorithm is
a popular technique for linear programming used to solve minimization
and maximization problems that are subject to linear constraints. The
simplex algorithm reduces the optimization problem to a series of iter-
ative matrix operations. In this paper we perform an empirical analysis
of our algorithm and also study the impact of the density of the un-
derlying matrix on the overall performance. We observed a maximum
speedup of 10.2 at 16 threads and also demonstrated that our proposed
parallel algorithm scales well over a range of matrix densities. We also
make an important observation that the effect of increasing the number
of constraints is more significant than the effect of varying the number
of variables.

Keywords: large-scale problems· linear programming· Simplex · paral-
lel computing· scalable algorithms· OpenMP

1 Introduction

Linear programming, also known as linear optimization, is a method to achieve
the optimal outcome for a minimization or maximization problem, subject to a
set of linear relationships. Among the various methods available for solving linear
programming problems, simplex is the most widely used algorithm, both com-
mercially and academically [1]. The storage and computational overhead make
the standard simplex method an expensive approach for solving large linear pro-
gramming problems. Apart from the computational cost, the standard simplex
algorithm also requires the previous iteration to be completed before the new
solution can be computed, thus restricting the scope of parallelization [2].

Even though the simplex algorithm is primarily sequential, several attempts
have been made during the last decades to parallelize it. There are broadly
two implementations for the Simplex Algorithm: The Standard Simplex Method
and The Revised Simplex Method (RSM). The Standard Simplex method refers
to the original algorithm proposed by George Dantzig [1]. RSM, on the other
hand, seeks to efficiently implement the Standard Simplex algorithm by em-
ploying a host of Matrix operations specifically built to exploit the sparsity of



2 A. Banerjee, P. Shah, S. Nandani, S. Tyagi, S. Kumar, B. Chaudhury

matrices [3,4]. This means that the RSM is mathematically equivalent to the
standard simplex method but differs in implementation. In RSM, instead of
having to compute and store the full table in each iteration, it is only necessary
to keep track of some of the information, reducing the redundancy, and use the
matrix operations directly on the relevant data. This matrix-oriented approach
allows for greater computational efficiency, as it exploits, the sparsity of the ma-
trix using matrix inversion techniques optimized for sparse matrices. Apart from
certain GPU-based implementations, RSM’s optimizations strategies fall short
for denser matrices. Furthermore, the steps employed have a limited scope for
parallelization [1].

As we moved to the multi processor era, the importance shifted to running
the standard algorithm on multiple cores. In 2000, Maros and Mitra presented a
cooperative parallel version of the sparse implementation of the revised simplex
method for linear programs on distributed memory multiprocessors [5]. Ploskas
presented a parallel implementation of the standard simplex algorithm using a
personal computer with two cores. Due to dense matrices and heavy communi-
cation, the ratio of computation to communication is extremely low and Ploskas’
computational results show that a linear speedup is hard to achieve even with
carefully selected communication optimization [3,5]. Later many other optimiza-
tion strategies were proposed [6] such as using certain linear algebraic techniques
necessary to exploit the dual block-angular structure of the problem or paral-
lelizing the matrix inverse step based upon GPU implementations. Most of these
improvements were primarily done on the revised simplex algorithm [5]. A par-
allel implementation based on combination of CPU and GPU was also proposed
in 2016 [7].

In this paper, we analyze the performance gains of an efficient parallel imple-
mentation of the Standard Simplex Algorithm over the sequential version, using
a shared-memory architecture. The standard simplex version has been chosen
over the revised method owing to known issues of scalability for denser matrices.
Here, we define the density of a matrix as the ratio of non-zero elements to the
total elements in the matrix. Our study revolves around the following parame-
ters which will help in effective understanding of the parallel implementation of
the Standard Simplex Algorithm proposed in this paper:

– Explore the scalability of the algorithm over a range of densities

– Explore the effect on varying the number of constraints

– Explore the effect on varying the number of variables

– Effectively exploiting the SIMD units to update the matrix.

We have analyzed the most important aspects of the algorithm based on the
above parameters and the underlying hardware architecture, which to the best
of our knowledge, have not been explored and reported in the existing literature.
The state-of-the-art implementation does not talk about the performance of the
algorithm on varying the density of the matrices. The code has been run on
shared-memory architecture systems. All processors share a single view of data
and the communication between them can be as fast as memory accesses to



An empirical investigation of OpenMP implementation of Simplex Algorithm 3

a particular location with a lot of intra-node parallelisms to exploit and our
implementation is designed specifically for this purpose.

2 Serial Algorithm

Any linear programming (LP) problem can be modelled into the following stan-
dard form:

maximize Z = CX

subject to AX = B where X ≥ 0

where A is the constraint matrix, B forms the constant vector matrix and C
corresponds to the objective function coefficients. The objective function is the
function whose value is to be either minimized or maximized subject to the
given set of constraints given by Z. The X vector is the required solution to the
LP problem. After the initial modifications, the problems are formulated in the
above representation for solving via the Simplex Algorithm.

The simplex method is an iterative procedure for getting the most feasible
solution. In this method, we keep transforming the value of basic variables to
get the maximum value for the objective function. Within the current context
the following assumptions have been made for the linear inequality problems:

– All problems are maximization problems. In the event of a minimization
problem, the objective function is multiplied by -1.

– All problems are to be initially considered in the form of less than or equal
(≤) inequalities.

AX ≤ B

The following steps illustrate the working of the serial simplex algorithm.

1. Introduce Slack Variables to convert inequality to equality constraints (AX =
B). The slack variables are known as basic variables and the original ones as
non-basic. All slack variables have a zero coefficient in the objective function.

2. Create an initial table3 consisting of n non-basic variables and m-basic vari-
ables. The table consists of the coefficient of the linear constraint variables
and the coefficients of the objective function. The slack variables form the
initial basis.

Cj C1 C2 · · · 0 0

CB XB B x1 x2 · · · xn+1 xn+2 · · · Min Ratio Row Operations

Cn+1 Xn+1 B1 A11 A12 · · · 1 0 · · ·
Cn+2 Xn+2 B2 A21 A22 · · · 0 1 · · ·
...

...
...

...
...

...
...

...
...

Zj − Cj ans −C1 −C2 · · · · · · 0 0

3 Note: The table mentioned in Step 2 is not in the block-structured notation. The
sample table has been employed in order to effectively explain the serial algorithm.



4 A. Banerjee, P. Shah, S. Nandani, S. Tyagi, S. Kumar, B. Chaudhury

3. The value of the objective function with respect to every variable (Zj) at
that instant can be calculated by summing up the product of the objective
function coefficients of the variable in the basis and the coefficient associated
to other variables in the same row of the table.

4. Calculate Zj – Cj for all the variables. Cj represents the coefficient of the
variable in contention in the objective function. The column with the max-
imum value (< 0) represents the entering variable for the basis in the next
iteration. This column is known as the pivot column. If all values of reduced
cost (Zj - Cj) are ≥ 0 then the optimal solution has been reached.

5. Calculate the ratio of the elements of B with the corresponding coefficients
of the pivot column. The row representing the minimum positive value of the
ratio represents the variable that will leave the basis in the next iteration.
This row is known as the pivot row. If all the values of the replacement
ratio are either negative or infinite, then it represents a case of unbounded
solution.

6. The intersection value of the Pivot row and Pivot column gives the value of
the pivot coefficient. Divide the pivot row with the pivot coefficient. Subtract
all the other rows from the new modified pivot row by a multiplier such that
all the other values in the pivot column apart from the pivot coefficient
become zero. In order to prepare for the next iteration, swap the entering
and leaving variables along with all the other associated values.

7. Go to step 3. Repeat until the algorithm ends.

An example of the above-mentioned algorithm can be seen in Appendix A.

3 Parallel Algorithm

Fig. 1. Flowchart for the parallel implementation. Nodes with an overlying boundary
in the background represent regions where multiple threads work concurrently.



An empirical investigation of OpenMP implementation of Simplex Algorithm 5

Researchers till now have stated that the serial time complexity of the simplex
algorithm is generally a polynomial, but for the worst case, the time complexity
tends to increase exponentially [6]. The execution time depends on two factors:
time taken for each iteration and secondly, the number of iterations which will be
equal to the number of pivots that need to be traversed in order to reach the opti-
mal point in the n-dimensional space which satisfies the given constraints [8].The
latter factor makes the evaluation of time complexity a highly involved task, as
every problem depending on the density and the structure of the constraint
matrix gives rise to a novel situation.

Efforts to effectively modify the algorithm, by evaluating the different cases,
are being carried out in order to generalize the time complexity expression [6].
From a generic standpoint, one can assume that the time complexity increases
with the number of equations or the number of variables, however, this is not
guaranteed. For certain cases, it tends to the worst exponential time complexity,
leading to an exceptionally large number of iterations to obtain a solution, even
for relatively smaller problem sizes [9].

In order to understand how the serial algorithm can be parallelized, the
time distribution among various steps of the naive serial version (Section 2) is
analyzed. The results show that Step 6 constitutes the major portion of the run
time with more than 99.5% contribution followed by Steps 3 and 4 (or Step 7),
with Step 5 taking the least time.

3.1 Implementation

In this Section we provide a methodology for parallel implementation using
OpenMP which optimizes its serial counterpart mentioned in Section 2. Fig.
1, gives an overview of the steps involved in the implementation.

Steps 1 and 2 are the same as the serial implementation of the standard
simplex algorithm given in Section 2, since it is essential to perform these steps in
a sequential format before solving the linear programming problem. After these
steps, we create a parallel region and define the required number of threads and
move to OpenMP implementation.

Step 3 and 4 now uses all the threads that were initialized. Every thread
works among a defined set of columns to find the index of the column holding
the maximum absolute value among the negative elements in the objective row.
A user-defined class consisting of the values of the maximum data entry and
the corresponding index are stored and evaluated via the reduction clause. This
class notation and reduction clause together form a powerful tool to evaluate
maximum or minimum elements in a data structure, as compared to traditional
explicit comparison mechanisms.

For Step 5, we again make use of the reduction clause with the user-defined
class to find the leaving variable by evaluating the Minimum Ratio row-wise.
Finally, a single thread with a nowait clause checks if the solution is unbounded
or not present, and exit the parallel region if the solution satisfies the unbounded
constraints.

In Step 6, the pivot row is now updated concurrently among the threads. Once
the pivot row has been updated, all the remaining rows are updated. The rows



6 A. Banerjee, P. Shah, S. Nandani, S. Tyagi, S. Kumar, B. Chaudhury

are evaluated via the pragma for construct, while the iterations among columns
has also been vectorized via the simd construct. Simultaneous modifications are
possible because there are no dependencies among columns or rows.

Steps 3 and 4 (as Step 7), are again performed in the parallel region with
the mechanism mentioned above. A single thread finally updates all iteration-
specific local variables. Finally, the loop continues until a solution reached, or
an exit clause is triggered for ’Unbounded Solution/No Possible solution’.

The above steps are implemented using a block-structured matrix notation
having dimensions (m+ 1)× (n+m+ 1) (where m is the number of constraints
and n, the number of variables) as proposed in the case of the Standard Simplex

method of Dantzig [1]. The same is given as

[
A B
−C 0

]
where A is an mxn matrix,

B is an mx1 vector, and C is an 1xn matrix.

Algorithm 1 Parallel Implementation of Simplex Algorithm

1 //Get the dimension of the table

2 Rows(R)= m + 1,

3 Columns(C) = m + n + 1

4 Initialize & load the data in table

5 Algorithm time starts from here

6

7 # pragma omp parallel <shared variables>

8 {
9 //Step 3 & 4

10 # pragma omp for <schedule> <reduction>

11 for(int j=0;j<C;j++){
12 find max negative value (max value)

13 from reduced cost row

14 }
15

16 Corresponding index=max index

17 & column=Pivot Col

18

19 #pragma omp single nowait

20 max value=0

21

22 do{
23 // Step 5

24 #pragma omp for <schedule><reduction>

25 for(int j=0;j<R;j++) {
26 find the min value

27 (min value) from Min Ratio column

28 do count++ for negative values

29 }
30

31 #pragma omp single nowait

32 {
33 if count == R

34 there is unbounded/no solution

35 flag=False break

36 else

37 Row corresponding to

38 min value is the

39 Pivot row with index= min index

40 }
41

42 // Step 6

43 pivot = table[min index][max index]

44 #pragma omp barrier

45

46 #pragma omp parallel for

47 for(int i=0;i<C;i++)

48 update Pivot Row

49 #pragma omp parallel for

50 for(int i=0;i<C;i++)

51 #pragma omp simd

52 for(int i=0;i<R;i++)

53 update all elements except

54 that of Pivot row

55 }
56

57 //Step 3 & 4 repeated

58 #pragma omp for <schedule> <reduction>

59 for(int i=0;i<C;i++)

60 find the new reduced cost values

61 for updated table

62 countNegative++ for negative values

63

64 #pragma omp single

65 Update the initial conditions

66 }while(countNegative and flag)

67 }
68

69 //Algorithm time ends here

70 Solution = table[Rows][Columns]



An empirical investigation of OpenMP implementation of Simplex Algorithm 7

3.2 Optimization Strategies

After analyzing the time bifurcation and identifying the steps which take sig-
nificant amount of time we conducted experiments to optimize the code. The
following methodologies were explored to make the algorithm more efficient.

Optimal Scheduling clause and Load Balancing: As shown in Fig 2, for
larger problem sizes, the performance for static scheduling clauses is possibly
hampered when some threads take more time to complete their share of work.
Even for dynamic scheduling, with a completely random thread allocation, en-
hanced performance may require guided scheduling. Thus, guided scheduling
mechanisms were used to effectively tackle the load balancing problem.

Optimal SIMD Units: In order to find the SIMD units for vectorization in
Step 6 above, multiple values of SIMD units ranging from 2 to 8 were considered.
The optimal SIMD length was found to be 4 for our implementation, just half of
the total number of lanes. We assume that the use of all SIMD lanes generates
excessive overhead for using additional SIMD units, and the use of fewer than
half the SIMD lanes under-utilizes a SIMD unit’s resources.

Fig. 2. Scheduling on 512x512 dataset
of 0.5 density

Fig. 3. Variation of simdlen()

3.3 Algorithm Analysis

In this section the algorithm is analyzed to provide a basis for drawing out
conclusions.

Cache Miss Analysis Assume that the number of rows is ’r’ and the number
of columns is ’c’, while the matrix is stored in row-major format in the memory.
Theoretical analysis of each step led to the following expression: The steps men-
tioned below are the corresponding steps in the Serial Algorithm mentioned in
Section 2.

Steps 3 and 4 access the matrix row wise (considering a cache line of 64
bytes and double data-type): c/8 misses

Step 5 requires us to access the matrix column-wise: r misses
Step 6 update almost the entire matrix : r∗c

8 . Thus Miss ratio in a single
iteration of the overall loop would be

MissRatio =
c
8 + r + r∗c

8

r + c + r ∗ c
≈ 1

8



8 A. Banerjee, P. Shah, S. Nandani, S. Tyagi, S. Kumar, B. Chaudhury

In order to verify the above miss ratio, profiling was performed via Valgrind
using the memcheck and callgrind tools on BENCH2 for a 256x256 problem
of density 0.5. The cache simulator simulates a computer with a split L1 cache
(separate instruction I1 and data D1), which is backed up by a single second-level
cache (L2). This is consistent with the architecture of most modern machines’
caches. The reads/writes and respective misses recorded after profiling for L1
data and L2 unified cache are:

D refs D1 misses LLd misses D1 miss rate LL refs LL misses LL miss rate
serial 39,028,802,003 66,529,666 28,606 0.1705% 66,547,316 31,020 0.0466%

openMP 44,301,959,277 66,980,319 29,457 0.1512% 66,998,585 32,331 0.0483%

Table 1. D refs (Data cache memory reads), D1 misses (D1 cache data misses but found in L2),
LLd misses (L2 cache data misses but found outside it), LL refs (Combined L2 cache references),
LL misses (Combined L2 cache misses)

The key observations to be made here is that that the D1 cache miss rate has
gone down in the parallel (OpenMP) version as compared to the serial version.
Furthermore, the cache miss rate is significantly less than what is expected the-
oretically. This can be explained by the fact that instead of bringing in cache
blocks one by one, the compiler automatically optimizes this procedure based
on the repetitive access patterns that it finds with every iteration. One such
compiler optimization is pre-fetching. Pre-fetches are possible only if the mem-
ory addresses can be determined ahead of time. However, for extremely small
table sizes, the cache miss rate is much higher on account of ineffective compiler
optimizations and follows the standard expected values.

Analyzing the nature of the algorithm The serial implementation of the
simplex algorithm, Section 2, was evaluated for understanding the nature of
the algorithm, in particular, whether the algorithm is CPU-bound or memory-
bound. In our algorithm we consider m as the number of constraints and n as
the number of variables. So, the size of the table will be (m + 1) × (n + m + 1),
and let a = m + 1 and b = n + m + 1.

Now, let’s consider a single iteration of the do loop, as this represents the
most granular as well as comprehensive segment of this iterative algorithm. An
analysis of its steps will provide a basic picture of the algorithmic operation. We
obtained the following expression after analyzing the number of computations
and memory access counts:

Computations = 3a + b + a + 2ab + 6b

Memory Access = 2a + b + a + 2ab + 2b

The above figures will be multiplied by the total number of pivots which is
a constant factor, depending upon the problem. So, barring that factor, we can
state that our implementation of the simplex algorithm has more computations
in comparison to memory access and thus, being CPU-bound it will be more
suitable to be parallelized on a shared-memory architecture.



An empirical investigation of OpenMP implementation of Simplex Algorithm 9

4 Experimental Results and Observations

We have implemented our algorithm on two systems with the following hardware
architecture.

Specifications BENCH1 BENCH2

Model Name
Intel(R) Xeon(R) Intel(R) Xeon(R)

Silver 4214R CPU @ 2.40GHz CPU E5-2640 v3 @ 2.60GHz

Core(s) per socket 12 8

Socket(s) 2 2

L1d cache 768KB 32KB

L2 cache 24MB 0.256MB

L3 cache 33MB 20.48MB

GNU GCC version 9.3.0 10.2.0

The primary motivation for using two different hardware architectures was to
understand the performance of this algorithm on different hardware cores with
large and small L1 caches and large and small L2 caches per core. The above
data represents the total cache of the system in consideration. BENCH1 has
1MB L2 cache per core while BENCH2 has 256KB of L2 cache per core. L3
cache is shared in both cases.

We have compared certain selected results with the current state-of-the-art
algorithm implementation which was implemented on a system with four AMD
Opteron 6376 processors with 16 cores, totalizing 64 cores, 768KB L1 and 16MB
L2 individual caches per core, and 16Mbytes L3 caches per socket, running
Ubuntu 16.04.2 LTS [5].

For reproducibility, we have made use of the standard NETLIB LP dataset4,
which comes in the specific mps format, consisting of all the necessary variables
and their respective coefficients. In addition to the Netlib dataset, we made
use of a computationally generated dataset of specific dimensions and density
[10]. The generated datasets do not guarantee a finite solution, and hence, some
anomalies might arise in the analysis of those datasets, but they are not relevant
to the behavior of the algorithm. The results have been verified using standard
reference codes, and the answer is consistent over multiple thread configurations.

Keeping into consideration the configuration of our machines and the fact
that in the worst case the Simplex algorithm can take exponential time to solve,
we limit our observations to the maximum number of variables to 4096 and the
number of constraints as 512 in the primal formulation. We have also analyzed
their dual counterpart. For most of the cases we have either fixed variables to
256 and varied the number of constraints or vice versa, as this allowed us to
efficiently exploit the different levels of the underlying memory hierarchy of the
system.

4 http://www.netlib.org/

http://www.netlib.org/


10 A. Banerjee, P. Shah, S. Nandani, S. Tyagi, S. Kumar, B. Chaudhury

All mean execution times have been measured in seconds. All standard graphs
have been plotted with respect to the run time on the BENCH1 unless mentioned
otherwise.

4.1 NETLIB Dataset

In this section we evaluated the standard Netlib dataset using our serial and
parallel code.

Fig. 4. Speedup for standard netlib
datasets (performed on BENCH 1)

From Fig. 4 we observed that the
speedup for all the datasets remained
within the linear upperbound and
we could also see that for smaller
datasets the speedup for large number
of threads was very low due to the syn-
chronisation overhead. The decrease in
speedup after certain problem size is
due to fetching of the data from L3
cache as we have 1MB per core L2
cache and the size of dataset exceeds
that limit.

4.2 Variation of the Number of Variables

In this section, we examine LP problems of 256 constraints and variables varying
from 256 to 4096 with a density of 0.5. We can verify from the hardware architec-
ture that the data with this large problem size would be fetched from the L2 or
L3 cache. This lead to an increase in fetching time and overhead incurred due to
the necessity to maintain consistent copies of the data across all the processors.

In Fig. 5 (256 constraints) it is observed that the speedup for each thread
size increases (up to a point at mid-size) and then decreases. Peak values for
large thread counts occur at larger problem sizes. At the largest problem size,
the reduction in the peak performance is greatest for small thread counts (1, 2
and 4) and smallest for the largest thread counts (8,12 and 16).

We could observe superlinear speedup in the case of 2 and 4 threads for
certain problem sizes. Due to pragma omp for, there is coarse parallelization,
whereas the use of simd enables finer parallelization within each thread and
specifying the vector length in simdlen() can give us control over the extent of
parallelization needed/supported by the system. Thus, the superlinear speedup
can be attributed to this increased parallelization within each thread.

From Fig. 6 we see that the speedup achieved in the BENCH2 is similar to
the one achieved in the BENCH1, till the problem size fits in the L1 and L2 cache
of the respective systems. After that, we witness a drop in the speedup. In the
case of BENCH2, when the work allocated per thread (in terms of the size of the
table) exceeds the L2 cache size and results in data being continuously fetched



An empirical investigation of OpenMP implementation of Simplex Algorithm 11

from the L3 cache, an increase in the mean execution time occurs. BENCH1 had
larger L1 and L2 cache sizes leading to higher speedup for its simulation.

Our implementation observes a maximum speedup of 10.2 with 16 threads for
256x2048 which is comparable to the maximum speedup of ≈ 10 for a problem
size of 256x4096 with 16 threads in a state-of-the-art implementation, shown in
[5]. Secondly, we see that in the state-of-the-art implementation, although the
relative trend is similar, the speedup increases till 16 threads for all problem
sizes but in our case, it starts decreasing from 4 to 8 threads for smaller problem
sizes owing to the difference in the hardware architecture.

Fig. 5. Speedup (256 constraints) Fig. 6. Speedup (256 constraints and
12 threads)

4.3 Variation of the Number of Constraints

In this section, we examine LP problems for 256 variables and constraints varying
from 256 to 4096 with a density of 0.5.

Fig. 7. Speedup (256 variables) Fig. 8. Speedup (256 variables and 12
threads)

On increasing the constraints for 256 variables, the speedup increases faster
(because of the number of iterations increase), as compared to when the number
of variables increased. As a result of this, the drop in speedup on increasing
threads, which occurred in the previous section for 256 constraints(Fig. 5), now
happens at a lower threshold and is evident from Fig. 7 and Fig. 8. For 2048
constraints with 256 variables the problem size is about 36MB which exceeds
the L3 cache limit for the BENCH1. Thus we observe a drop. We observe a



12 A. Banerjee, P. Shah, S. Nandani, S. Tyagi, S. Kumar, B. Chaudhury

temporary increase for 4096x256 since the problem has no solution and has a
very low execution time.

As compared to the state-of-the-art implementation, for problems with 256
variables, we see that in both the implementations, the speedup increases for
larger problem size as threads increase to 16 and vice versa is seen for smaller
problem sizes where the speedup first increases and then decreases as the threads
increase to 16. We see smaller speedup values, in general, as compared to the
state-of-the-art implementations. This can be attributed to the smaller cache
architecture for L2 and L3 levels.

4.4 Variation in Matrix Density

The standard Simplex Algorithm for OpenMP was initially proposed in [5]
primarily for dense matrices. In this section, we attempt to explore its scalability
to lower densities. We have considered 512x512 matrices with densities varying
from 0.1 to 1 in steps of 0.1. These experiments were performed on BENCH1.

Fig. 9. Speedup vs Matrix Den-
sity

Sparse problems often take fewer num-
ber of iterations to be solved, as compared
to dense matrices, owing to their inherent
matrix structure and the number of ma-
nipulations involved. Therefore, the syn-
chronization overhead has a greater prece-
dence, and speedup is reduced. Hence from
a generic standpoint, sparse matrices may
have a slightly less speedup as compared
to dense matrices in this algorithm. The
final result however depends on the actual
problem structure. We can see from Fig. 9,that the speedup in all the cases
remains almost constant or increases a little when the density of the matrices
increases. Hence, the parallel algorithm is scalable in that nature.

4.5 Discussion

As the number of threads increase, the problem partitioning also increases. Since
every iteration needs to modify the entire table, using more threads increases
the synchronization overhead, while using a lower number of threads reduces the
parallelization. We achieve an optimal limit on the number of threads somewhere
in between. We could also conclude that there exists a critical problem size
for each thread where the nature of the speedup changes from increasing to
decreasing on either side of that critical number. This critical value is achieved
at a larger problem size when using a larger thread count.

We observed that smaller problems performed better with a lower number
of threads as the overhead associated with a larger number of threads signifi-
cantly increases the run-time. This overhead is mainly attributed to two factors:
synchronisation overhead amongst the threads, and false sharing when there are



An empirical investigation of OpenMP implementation of Simplex Algorithm 13

multiple threads working on the same cache line(primarily in step 6). However,
on increasing the problem size, the synchronization overhead takes less prece-
dence as the scope for parallelization increases leading to higher speedups.

In general, efficiency decreases with an increase in the number of threads. At
large problem sizes with high thread counts, even though the absolute speedup
is high, the efficiency is quite low. This can be verified from Fig. 10. For larger
problems with higher iteration counts, we need to maintain synchronization even
among a single iteration, highlighted by pragma omp barrier constructs in the
parallel implementation. This is why the synchronization overhead plays a major
role.

Fig. 10. Efficiency (256 con-
straints)

As compared to the state-of-the-art im-
plementation, for problems with 256 con-
straints, we see similarity for smaller num-
ber of variables where efficiency decreases
as threads increases for a given number of
variables. The comparison for 2 threads is
not valid due to their assumption that the
time for serial implementation is double
that of using 2 threads while we did not
make that assumption.

5 Conclusion

The theoretical understanding of the standard simplex algorithm supported by
the experimental observations from our OpenMP based parallel implementation
on two different architectures for a variety of problem sizes enabled us to critically
analyze the problem. In our CPU based parallel implementation, vectorization
contributes significantly towards improving the performance, however, this is
constrained by the hardware properties of the system as well as the problem
structure. Our parallel algorithm proved to be fairly scalable, in terms of relative
speedup, for the matrices of varying densities (in range of 0.1 to 1).

We could also conclude that the number of constraints has a greater factor of
proportionality while determining speedup in comparison to the number of vari-
ables. This is because the problem size or the number of computations increases
more with the increase in the number of constraints in comparison to the number
of variables. This can also be explained using two types of overhead, synchro-
nization overhead and/or the overhead due to completely filled cache leading to
delayed memory access. Increasing the number of constraints for the chosen prob-
lem sizes lead to cache fulfillment hence the drop in the performance, whereas on
increasing variables, the synchronisation overhead incurred due to false sharing,
dominates and in a bid to maintain consistent values, in the shared L3 cache and
higher memory units , we incurred a drop in the performance. The source code
pertaining to this work is being made publicly available under a permissive open
source licence at Github https://github.com/arkaprabha10/Simplex-Algorithm.

https://github.com/arkaprabha10/Simplex-Algorithm


14 A. Banerjee, P. Shah, S. Nandani, S. Tyagi, S. Kumar, B. Chaudhury

References

1. George B. Dantzig. 1990. Origins of the simplex method. A history of scientific com-
puting. Association for Computing Machinery, New York, NY, USA, 141–151.DOI:
https://doi.org//10.1145/87252.88081

2. Karl Heinz Borgwardt. 1986. A probabilistic analysis of the simplex method.
Springer-Verlag, Berlin, Heidelberg.

3. Ploskas N., Samaras N., Margaritis K. (2013) A Parallel Implementation of
the Revised Simplex Algorithm Using OpenMP: Some Preliminary Results. In:
Migdalas A., Sifaleras A., Georgiadis C., Papathanasiou J., Stiakakis E. (eds)
Optimization Theory, Decision Making, and Operations Research Applications.
Springer Proceedings in Mathematics & Statistics, vol 31. Springer, New York,
NY. DOI:https://doi.org//10.1007/978-1-4614-5134-1 11

4. Harvey M. Wagner. 1957. A Comparison of the Original and Re-
vised Simplex Methods. Oper. Res. 5, 3 (June 1957), 361–369.
DOI:https://doi.org//10.1287/opre.5.3.361

5. Coutinho, D., Souza, S.X., & Aloise, D. (2018). A Scalable Shared-Memory Parallel
Simplex for Large-Scale Linear Programming. ArXiv, abs/1804.04737
https://arxiv.org/pdf/1804.04737v1.pdf

6. Goldfarb D. (1994) On the Complexity of the Simplex Method. In: Gomez S.,
Hennart JP. (eds) Advances in Optimization and Numerical Analysis. Mathematics
and Its Applications, vol 275. Springer, Dordrecht.
DOI:https://doi.org//10.1007/978-94-015-8330-5 2

7. Basilis Mamalis and Marios Perlitis. 2016. A Hybrid Parallelization Scheme
for Standard Simplex Method based on CPU/GPU Collaboration. In Proceed-
ings of the 20th Pan-Hellenic Conference on Informatics, 2016 (PCI ’16). As-
sociation for Computing Machinery, New York, NY, USA, Article 12, 1–6.
DOI:https://doi.org//10.1145/3003733.3003757

8. John Fearnley and Rahul Savani. 2015. The Complexity of the Simplex Method. In
Proceedings of the forty-seventh annual ACM symposium on Theory of Computing
(STOC ’15). Association for Computing Machinery, New York, NY, USA, 201–208.
DOI: https://doi.org//10.1145/2746539.2746558

9. Ed Klotz, Alexandra M. Newman, Practical guidelines for solving dif-
ficult linear programs, Surveys in Operations Research and Manage-
ment Science, Volume 18, Issues 1–2, 2013, Pages 1-17, ISSN 1876-7354,
DOI:https://doi.org//10.1016/j.sorms.2012.11.001

10. Ketabchi, S., Moosaei, H., Sahleh, H. and Hedayati, M., 2012. New Methods for
Solving Large Scale Linear Programming Problems in the Windows and Linux
computer operating systems. DOI: https://doi.org//10.12785/amis/070440

https://doi.org//10.1145/87252.88081
https://doi.org//10.1007/978-1-4614-5134-1_11
https://doi.org//10.1287/opre.5.3.361
https://doi.org//10.1007/978-94-015-8330-5_2
https://doi.org//10.1145/3003733.3003757
https://doi.org//10.1145/2746539.2746558
https://doi.org//10.1016/j.sorms.2012.11.001
https://doi.org//10.12785/amis/070440


An empirical investigation of OpenMP implementation of Simplex Algorithm 15

A Appendix: Serial Algorithm - Working Example

This example illustrates the standard simplex algorithm steps mentioned in Sec-
tion 2. Steps 1 to 7 are the basic steps of the algorithm, whereas steps 8 and
onward are for a second iteration.

Suppose, Z = 3x1 + 4x2

Subject to,
x1 + 2x2 ≤ 4
3x1 + 2x2 ≤ 6
x1, x2 ≥ 0

1. Introduce slack variables to get,
Z = 3x1 + 4x2 + 0x3 + 0x4

Subject to,
x1 + 2x2 + x3 + 0x4 = 4
3x1 + 2x2 + 0x3 + x4 = 6
x1, x2 ≥ 0

2. Table of coefficients is made with
slack variables as basic variables.

3. The Zj − Cj differences are eval-
uated.

4. The smallest value (-4 here) for
x2 is determined. It becomes the
new entering variable and the
corresponding column becomes
the pivot column.

5. The min ratios are determined
and the smallest value (2) is
set for x3 variable, which be-
comes the leaving variable, and
the corresponding row becomes
the pivot row.

6. The pivot row is divided by the
pivot coefficient (2).

7. Now we have the new basis vari-
ables as x2 and x4. We again eval-
uate Zj − Cj values.

8. The smallest value for differences
is -1, and is set in x1, which is
the new entering variable, with
the corresponding column set as
the pivot column.

9. The min ratios are determined
and the smallest value (1) is set
in x4, which becomes the leaving
variable, and the corresponding
row becomes the pivot row.

10. The pivot row is divided by the
pivot coefficient (2).

11. Now we have the new basis vari-
ables as x2 and x1. We again eval-
uate all Zj − Cj values. All val-
ues are ≥ 0 and we terminate
the algorithm with: x1 = 1, x2 =
3
2 , and Z = 9


	An empirical investigation of OpenMP based implementation of Simplex Algorithm

